Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Hydroxy-3,4a,8-trimethyl-3,3a,4,4a,-7a,8,9,9a-octahydroazuleno[6,5-b]furan-2,5-dione

Shou-Cheng Pu,* Chun-Ling Tu and Yi Deng

School of Pharmaceutical Science & Technology, Tianjin University, Tianjin 300072, People's Republic of China Correspondence e-mail: pu2002@126.com

Received 22 October 2007; accepted 29 October 2007

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.077; data-to-parameter ratio = 9.0.

The title compound, C15H20O4, also known as dihydrohelenalin, is a drug obtained from a Chinese plant. It contains a seven-membered ring in a chair conformation and two fivemembered rings in twist conformations. The crystal packing involves O-H···O hydrogen bonds.

Related literature

For background, see: Bohlmann & Chen (1980); for similar compounds, see: Giordano et al. (1992).

Experimental

Crystal data	
$C_{15}H_{20}O_4$	b = 12.608 (3) Å
$M_r = 264.31$	c = 8.1146 (16) Å
Monoclinic, P2 ₁	$\beta = 95.59 \ (3)^{\circ}$
a = 6.3634 (13)Å	V = 647.9 (2) Å ³

Z = 2Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

Data collection

Rigaku Saturn diffractome Absorption correction: mu (CrystalClear; Rigaku/M 2005) $T_{\min} = 0.982, \ T_{\max} = 0.996$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.030 \\ wR(F^2) &= 0.077 \end{split}$$
S = 1.071605 reflections 178 parameters 1 restraint

T = 113 (2) K $0.10 \times 0.06 \times 0.04$ mm

	4071
eter	49/1 measured reflections
ılti-scan	1605 independent reflections
ISC,	1508 reflections with $I > 2\sigma(I)$
	$R_{\rm int} = 0.033$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\text{max}} = 0.22 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2\cdots O4^i$	0.80 (3)	2.09 (3)	2.8792 (19)	173 (2)
Symmetry code: (i)	$-r + 1 v + \frac{1}{2} -$	-7 + 2		

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2557).

References

- Bohlmann, F. & Chen, Z. L. (1980). Kexue Tongbao (Foreign Language Edition), 29, 900-903.
- Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Giordano, O. S., Pestchanker, M. J., Guerreiro, E., Saad, R., Enriz, R. D., Rodriguez, A. M., Jauregui, E. A., Guzman, J., Maria, A. O. M. & Wendel, G. H. (1992). J. Med. Chem. 35, 2452-2458.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA . Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o4543 [doi:10.1107/81600536807054116]

4-Hydroxy-3,4a,8-trimethyl-3,3a,4,4a,7a,8,9,9a-octahydroazuleno[6,5-b]furan-2,5-dione

S.-C. Pu, C.-L. Tu and Y. Deng

Comment

Dihydrohelenalin is one of the active components isolated from the traditional Chinese medicinal herb, Centipeda minima (L.), which has been found in moisty places throughout China and India. It is used to treat rhinitis, sinusitis and nasopharyngal tumors (Bohlmann & Chen, 1980). We report here the crystal structure (Fig. 1).

The crystal structure of (I) illustrated in Fig. 1 shows that seven-ring is chair conformation. Intermolecular O—H…O hydrogen bonds stabilize the crysta structure.

Experimental

The air-dried plant of Centipeda minima (*L*.) was exacted with EtOH (95%) and the extract was concentrated *in vacuo*. The residue was subjected to silical-gel column chromatography. Elution with chloroform-methanol (95:5 v/v) yielded the title compound. The identity of the title compound was confirmed by NMR spectroscopy. ¹H NMR in CDCl₃ (500 MHz): 0.9(3*H*, 8, H-15), 1.22 (3*H*, d, J=7 Hz, H-14), 1.35 (3*H*, d, J=7 Hz, H-13), 1.75 (1*H*, ddd, H-9a), 2.18 (1*H*, m, H-10), 2.2 (1*H*, ddd, H-9 b), 4.36 (1*H*, s, H-6), 4.78 (1*H*, m, H-8), 6.1 (1*H*, dd, J=8, 4 Hz, H-3), 7.7 (1*H*, dd, J=8, 2 Hz, H-2).

Refinement

In the absence ob anomalous scatterers Friedel pairs had been merged. The absolute configuration was set to be identical with the naturally occurring compound. All H atoms were positioned geometrically and refined using a riding model, with C—H in the range of 0.93 to 0.98Å and with $U_{iso}(H) = 1.2U_{eq}(C,O)$ or $U_{iso}(H) = 1.5U_{eq}(methyl C)$. The coordinates of the hydroxyl H atom were refined.

Figures

Fig. 1. A view of the molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

4-Hydroxy-3,4a,8-trimethyl-3,3a,4,4a,7a,8,9,9a- octahydroazuleno[6,5-b]furan-2,5-dione

Crystal data

C15H20O4

$$D_{\rm x} = 1.355 \ {\rm Mg \ m}^{-3}$$

 $M_r = 264.31$ Monoclinic, $P2_1$ a = 6.3634 (13) Åb = 12.608 (3) Åc = 8.1146 (16) Å $\beta = 95.59 (3)^{\circ}$ $V = 647.9 (2) \text{ Å}^3$ Z = 2 $F_{000} = 284$

Data collection

Rigaku Saturn diffractometer	1605 independent reflections
Radiation source: rotating anode	1508 reflections with $I > 2\sigma(I)$
Monochromator: confocal	$R_{\rm int} = 0.033$
T = 113(2) K	$\theta_{max} = 27.8^{\circ}$
ω and ϕ scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan (Crystalclear; Rigaku/MSC, 2005)	$h = -8 \rightarrow 8$
$T_{\min} = 0.982, \ T_{\max} = 0.996$	$k = -16 \rightarrow 14$
4971 measured reflections	$l = -10 \rightarrow 9$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.077$	$w = 1/[\sigma^2(F_0^2) + (0.0493P)^2 + 0.0251P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{max} < 0.001$
1605 reflections	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
178 parameters	$\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Melting point: 222.0-224.0 K

Cell parameters from 1887 reflections

Mo Ka radiation

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.5 - 27.8^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 113 (2) K

Block, colorless

 $0.10\times0.06\times0.04~mm$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.4530 (2)	0.75516 (10)	0.67372 (18)	0.0228 (3)
O2	0.11462 (19)	0.62013 (10)	0.85849 (17)	0.0172 (3)
H2	0.122 (4)	0.680 (2)	0.891 (3)	0.026*
O3	0.49752 (19)	0.31461 (9)	0.89731 (16)	0.0180 (3)
O4	0.8182 (2)	0.33531 (11)	1.02981 (18)	0.0222 (3)
C1	0.3892 (3)	0.67410 (14)	0.6056 (2)	0.0173 (4)
C2	0.3093 (3)	0.65984 (15)	0.4304 (2)	0.0219 (4)
H2A	0.3193	0.7104	0.3447	0.026*
C3	0.2207 (3)	0.56410 (15)	0.4119 (2)	0.0205 (4)
Н3	0.1659	0.5361	0.3078	0.025*
C4	0.2164 (3)	0.50487 (13)	0.5728 (2)	0.0151 (3)
H4	0.0773	0.5224	0.6139	0.018*
C5	0.2305 (3)	0.38352 (14)	0.5744 (2)	0.0177 (4)
H5	0.3802	0.3617	0.5658	0.021*
C6	0.1580 (3)	0.34060 (14)	0.7367 (2)	0.0184 (4)
H6A	0.0139	0.3682	0.7455	0.022*
H6B	0.1454	0.2626	0.7250	0.022*
C7	0.2865 (3)	0.36248 (13)	0.9015 (2)	0.0167 (4)
H7	0.2163	0.3217	0.9864	0.020*
C8	0.3262 (3)	0.47520 (13)	0.9748 (2)	0.0146 (3)
H8	0.2140	0.4866	1.0511	0.018*
C9	0.3241 (3)	0.57586 (12)	0.8658 (2)	0.0137 (3)
H9	0.4232	0.6283	0.9241	0.016*
C10	0.3840 (3)	0.56456 (12)	0.6887 (2)	0.0137 (3)
C11	0.6100 (3)	0.52231 (14)	0.6802 (2)	0.0162 (3)
H11A	0.6195	0.4496	0.7228	0.024*
H11B	0.7102	0.5675	0.7475	0.024*
H11C	0.6441	0.5230	0.5650	0.024*
C12	0.0888 (3)	0.33500 (16)	0.4300 (3)	0.0244 (4)
H12A	0.1353	0.3597	0.3249	0.037*
H12B	-0.0578	0.3569	0.4373	0.037*
H12C	0.0984	0.2575	0.4355	0.037*
C13	0.5314 (3)	0.45433 (14)	1.0879 (2)	0.0194 (4)
H13	0.4850	0.4244	1.1926	0.023*
C14	0.6371 (3)	0.36407 (13)	1.0068 (2)	0.0170 (4)
C15	0.6810 (3)	0.54405 (15)	1.1414 (3)	0.0233 (4)
H15A	0.7498	0.5693	1.0459	0.035*
H15B	0.7883	0.5185	1.2271	0.035*
H15C	0.6016	0.6023	1.1859	0.035*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0248 (7)	0.0170 (6)	0.0273 (8)	-0.0031 (5)	0.0055 (6)	0.0005 (5)
02	0.0140 (6)	0.0137 (5)	0.0239 (7)	0.0030 (5)	0.0020 (5)	-0.0020 (5)
03	0.0169 (6)	0.0154 (6)	0.0218 (7)	0.0025 (4)	0.0023 (5)	0.0001 (5)
04	0.0165 (6)	0.0228 (6)	0.0272 (8)	0.0035 (5)	0.0023 (5)	0.0071 (5)
C1	0.0142 (8)	0.0175 (8)	0.0207 (10)	0.0027 (6)	0.0041 (7)	0.0037 (7)
C2	0.0218 (9)	0.0265 (9)	0.0177 (10)	0.0051 (7)	0.0032 (7)	0.0060 (7)
C3	0.0174 (9)	0.0290 (9)	0.0150 (9)	0.0047 (7)	0.0003 (7)	0.0006 (7)
C4	0.0128 (8)	0.0187 (8)	0.0138 (9)	0.0000 (6)	0.0011 (6)	-0.0021 (7)
C5	0.0153 (8)	0.0185 (8)	0.0191 (10)	0.0001 (6)	0.0003 (7)	-0.0054 (7)
C6	0.0172 (8)	0.0153 (7)	0.0223 (10)	-0.0023 (6)	0.0007 (7)	-0.0003 (7)
C7	0.0157 (8)	0.0149 (8)	0.0196 (9)	0.0002 (6)	0.0020 (7)	0.0018 (7)
C8	0.0175 (8)	0.0141 (7)	0.0122 (8)	0.0007 (6)	0.0013 (6)	-0.0008 (6)
C9	0.0116 (8)	0.0124 (7)	0.0171 (9)	0.0011 (6)	0.0007 (6)	-0.0008 (6)
C10	0.0116 (8)	0.0148 (7)	0.0147 (9)	-0.0004 (6)	0.0013 (6)	0.0000 (6)
C11	0.0120 (8)	0.0191 (8)	0.0177 (9)	0.0004 (6)	0.0025 (6)	0.0004 (7)
C12	0.0240 (9)	0.0244 (9)	0.0243 (11)	-0.0057 (7)	-0.0001 (7)	-0.0078 (8)
C13	0.0191 (9)	0.0191 (8)	0.0192 (10)	0.0021 (7)	-0.0021 (7)	0.0007 (7)
C14	0.0170 (8)	0.0166 (8)	0.0176 (9)	0.0013 (6)	0.0023 (7)	0.0056 (7)
C15	0.0200 (9)	0.0255 (9)	0.0228 (11)	-0.0001 (7)	-0.0058 (7)	-0.0026 (8)

Geometric parameters (Å, °)

O1—C1	1.213 (2)	С7—С8	1.552 (2)
O2—C9	1.441 (2)	С7—Н7	1.0000
O2—H2	0.80 (3)	C8—C13	1.544 (2)
O3—C14	1.347 (2)	C8—C9	1.546 (2)
O3—C7	1.475 (2)	С8—Н8	1.0000
O4—C14	1.205 (2)	C9—C10	1.529 (2)
C1—C2	1.473 (3)	С9—Н9	1.0000
C1—C10	1.539 (2)	C10-C11	1.541 (2)
C2—C3	1.335 (3)	C11—H11A	0.9800
C2—H2A	0.9500	C11—H11B	0.9800
C3—C4	1.507 (3)	C11—H11C	0.9800
С3—Н3	0.9500	C12—H12A	0.9800
C4—C5	1.533 (2)	C12—H12B	0.9800
C4—C10	1.547 (2)	C12—H12C	0.9800
C4—H4	1.0000	C13—C14	1.506 (3)
C5—C12	1.535 (3)	C13—C15	1.515 (3)
C5—C6	1.536 (3)	С13—Н13	1.0000
С5—Н5	1.0000	C15—H15A	0.9800
C6—C7	1.523 (3)	C15—H15B	0.9800
С6—Н6А	0.9900	C15—H15C	0.9800
С6—Н6В	0.9900		
С9—О2—Н2	109.2 (17)	С7—С8—Н8	105.6

C14—O3—C7	109.80 (13)	O2—C9—C10	108.17 (14)
O1—C1—C2	127.68 (17)	O2—C9—C8	107.35 (13)
O1—C1—C10	125.24 (17)	C10—C9—C8	118.16 (13)
C2C1C10	107.06 (15)	О2—С9—Н9	107.6
C3—C2—C1	108.70 (17)	С10—С9—Н9	107.6
C3—C2—H2A	125.6	С8—С9—Н9	107.6
C1—C2—H2A	125.6	C9—C10—C1	110.26 (13)
C2—C3—C4	113.23 (17)	C9—C10—C11	113.15 (14)
С2—С3—Н3	123.4	C1-C10-C11	103.35 (13)
С4—С3—Н3	123.4	C9—C10—C4	113.33 (14)
C3—C4—C5	119.72 (16)	C1C10C4	102.31 (14)
C3—C4—C10	102.46 (14)	C11—C10—C4	113.33 (14)
C5—C4—C10	116.38 (14)	C10-C11-H11A	109.5
C3—C4—H4	105.7	C10-C11-H11B	109.5
C5—C4—H4	105.7	H11A—C11—H11B	109.5
C10-C4-H4	105.7	C10-C11-H11C	109.5
C4—C5—C12	111.23 (16)	H11A—C11—H11C	109.5
C4—C5—C6	109.65 (15)	H11B—C11—H11C	109.5
C12—C5—C6	108.12 (15)	C5—C12—H12A	109.5
С4—С5—Н5	109.3	C5—C12—H12B	109.5
С12—С5—Н5	109.3	H12A—C12—H12B	109.5
С6—С5—Н5	109.3	C5—C12—H12C	109.5
C7—C6—C5	120.55 (15)	H12A—C12—H12C	109.5
С7—С6—Н6А	107.2	H12B-C12-H12C	109.5
С5—С6—Н6А	107.2	C14—C13—C15	113.24 (16)
С7—С6—Н6В	107.2	C14—C13—C8	104.89 (15)
С5—С6—Н6В	107.2	C15—C13—C8	120.98 (15)
H6A—C6—H6B	106.8	C14—C13—H13	105.5
O3—C7—C6	108.55 (14)	С15—С13—Н13	105.5
O3—C7—C8	105.59 (13)	C8—C13—H13	105.5
C6—C7—C8	123.76 (14)	O4—C14—O3	121.47 (16)
O3—C7—H7	105.9	O4—C14—C13	128.40 (17)
С6—С7—Н7	105.9	O3—C14—C13	110.13 (15)
С8—С7—Н7	105.9	C13—C15—H15A	109.5
C13—C8—C9	116.10 (14)	C13—C15—H15B	109.5
C13—C8—C7	99.70 (13)	H15A—C15—H15B	109.5
C9—C8—C7	122.73 (15)	C13—C15—H15C	109.5
С13—С8—Н8	105.6	H15A—C15—H15C	109.5
С9—С8—Н8	105.6	H15B—C15—H15C	109.5
O1—C1—C2—C3	-169.13 (19)	C8—C9—C10—C11	-60.42 (18)
C10—C1—C2—C3	12.6 (2)	O2—C9—C10—C4	-51.72 (17)
C1—C2—C3—C4	3.8 (2)	C8—C9—C10—C4	70.39 (18)
C2—C3—C4—C5	-148.81 (17)	O1-C1-C10-C9	38.0 (2)
C2—C3—C4—C10	-18.3 (2)	C2-C1-C10-C9	-143.68 (14)
C3—C4—C5—C12	-43.8 (2)	O1-C1-C10-C11	-83.2 (2)
C10—C4—C5—C12	-167.85 (15)	C2—C1—C10—C11	95.10 (16)
C3—C4—C5—C6	-163.30 (15)	O1—C1—C10—C4	158.87 (18)
C10—C4—C5—C6	72.62 (18)	C2—C1—C10—C4	-22.84 (17)
C4—C5—C6—C7	-66.9 (2)	C3—C4—C10—C9	142.38 (14)

supplementary materials

C12—C5—C6—C7	171.70 (15)	C5-C4-C10-C9	-85.06 (18)
C14—O3—C7—C6	156.60 (14)	C3—C4—C10—C1	23.69 (16)
C14—O3—C7—C8	21.99 (17)	C5-C4-C10-C1	156.25 (15)
C5—C6—C7—O3	-61.67 (19)	C3—C4—C10—C11	-86.89 (17)
C5—C6—C7—C8	62.8 (2)	C5-C4-C10-C11	45.7 (2)
O3—C7—C8—C13	-30.25 (17)	C9—C8—C13—C14	-105.84 (17)
C6—C7—C8—C13	-155.97 (17)	C7—C8—C13—C14	28.15 (18)
O3—C7—C8—C9	99.57 (17)	C9—C8—C13—C15	23.6 (2)
C6—C7—C8—C9	-26.2 (3)	C7—C8—C13—C15	157.62 (18)
C13—C8—C9—O2	-143.00 (15)	C7—O3—C14—O4	176.85 (16)
С7—С8—С9—О2	94.45 (18)	C7—O3—C14—C13	-3.05 (19)
C13—C8—C9—C10	94.47 (18)	C15—C13—C14—O4	29.1 (3)
C7—C8—C9—C10	-28.1 (2)	C8—C13—C14—O4	162.99 (18)
O2—C9—C10—C1	62.28 (16)	C15—C13—C14—O3	-151.05 (15)
C8—C9—C10—C1	-175.61 (14)	C8—C13—C14—O3	-17.1 (2)
O2—C9—C10—C11	177.47 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
O2—H2···O4 ⁱ	0.80 (3)	2.09 (3)	2.8792 (19)	173 (2)
Symmetry codes: (i) $-x+1$, $y+1/2$, $-z+2$.				

Fig. 1